Course Description

This course offers introductory training on the Vivado® Design Suite and helps you to understand the FPGA design flow.

For those uninitiated to FPGA design, this course helps in designing an FPGA design, which includes creating a Vivado Design Suite project with source files, simulating the design, performing pin assignments, applying basic timing constraints, synthesizing, implementing, and debugging the design. Finally, the process for generating and downloading bitstream on a demo board is also covered.

**This course focuses on the UltraScale and 7 series architectures. Check * Go to www.xilinx.com/training and click the Online Training tab to view demo board is also covered.

** Go to www.xilinx.com/training and click the Online Training tab to view these videos.

Software Tools

- Basic FPGA Architecture: Slice and I/O Resources*
- Basic FPGA Architecture: Memory and Clocking Resources*

Recommended Recorded Videos

- Basic FPGA Architecture: Slice and I/O Resources*
- Basic FPGA Architecture: Memory and Clocking Resources*

Prerequisites

- Basic knowledge of the VHDL or Verilog language
- Basic digital design knowledge

Recommended Recorded Videos

- Basic FPGA Architecture: Slice and I/O Resources*
- Basic FPGA Architecture: Memory and Clocking Resources*

Software Tools

- Vivado Design or System Edition 2018.1

Hardware

- Architecture: UltraScale™ and 7 series FPGAs**
- Demo board (optional): Kintex® UltraScale FPGA KCU105 board or Kintex-7 FPGA KC705 board**

Course Specification

Day 1

- Introduction to FPGA Architecture, 3D IC, SoC (Lecture)
- UltraFast Design Methodology: Board and Device Planning (Lecture, Demo)
- HDL Coding Techniques (Lecture)
- Introduction to Vivado Design Flows (Lecture)
- Vivado Design Suite Project Mode (Lectures, Lab)
- Behavioral Simulation (Lecture)

Day 2

- Introduction to Clock Constraints (Lecture, Lab, Demo)
- Generated Clocks (Lecture, Demo)
- I/O Constraints and Virtual Clocks (Lecture, Lab)
- Timing Constraints Wizard (Lecture, Lab)
- Introduction to Vivado Reports (Lecture, Demo)
- Setup and Hold Timing Analysis (Lecture)
- Vivado Power Estimator Spreadsheet (Lecture, Lab)
- Introduction to FPGA Configuration (Lecture)
- Introduction to the Vivado Logic Analyzer (Lecture, Demo)
- Introduction to Triggering (Lecture)
- Debug Cores (Lecture)
- Introduction to the Tcl Environment (Lecture, Lab)
- Using Tcl Commands in the Vivado Design Suite Project Flow (Lecture, Demo)
- Tcl Syntax and Structure (Lecture)

Topic Descriptions

Day 1

- Introduction to FPGA Architecture, 3D IC, SoC – Overview of FPGA architecture, SSI technology, and SoC device architecture.
- UltraFast Design Methodology: Board and Device Planning – Introduces the methodology guidelines covered in this course and the UltraFast Design Methodology checklist.
- HDL Coding Techniques – Covers basic digital coding guidelines used in an FPGA design.
- Introduction to Vivado Design Flows – Introduces the Vivado design flows: the project flow and non-project batch flow.
- Vivado Design Suite Project Mode – Create a project, add files to the project, explore the Vivado IDE, and simulate the design.
- Behavioral Simulation - Performs behavioral simulation for your design.
- Synthesis and Implementation – Create timing constraints according to the design scenario and synthesize and implement the design. Optionally, generate and download the bitstream to the demo board.
- Basic Design Analysis in the Vivado IDE – Use the various design analysis features in the Vivado Design Suite.
- Vivado Design Rule Checks – Run a DRC report on the elaborated design to detect design issues early in the flow. Fix the DRC violations.
- Vivado Design Suite I/O Pin Planning – Use the I/O Pin Planning layout to perform pin assignments in a design.
- Vivado IP Flow – Customize IP, instantiate IP, and verify the hierarchy of your design IP.

Day 2

- Introduction to Clock Constraints – Apply clock constraints and perform timing analysis.
- Generated Clocks – Use the report clock networks report to determine if there are any generated clocks in a design.
- I/O Constraints and Virtual Clocks – Apply I/O constraints and perform timing analysis.
Designing FPGAs Using the Vivado Design Suite 1
FPGA 1
FPGA-VDES1-ILT (v1.0H) Course Specification

- Timing Constraints Wizard – Use the Timing Constraints Wizard to apply missing timing constraints in a design.
- Introduction to Vivado Reports – Generate and use Vivado timing reports to analyze failed timing paths.
- Setup and Hold Timing Analysis – Understand setup and hold timing analysis.
- Xilinx Power Estimator Spreadsheet – Estimate the amount of resources and default activity rates for a design and evaluate the estimated power calculated by XPE.
- Introduction to FPGA Configuration – Describes how FPGAs can be configured.
- Introduction to the Vivado Logic Analyzer – Overview of the Vivado logic analyzer for debugging a design.
- Introduction to Triggering – Introduces the trigger capabilities of the Vivado logic analyzer.
- Debug Cores – Understand how the debug hub core is used to connect debug cores in a design.
- Introduction to the Tcl Environment – Introduces Tcl (tool command language).
- Using Tcl Commands in the Vivado Design Suite Project Flow – Explains what Tcl commands are executed in a Vivado Design Suite project flow.
- Tcl Syntax and Structure – Understand the Tcl syntax and structure.

Register Today
Hardent, the Authorized Training Provider (ATP) for Canada, New England (Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont) and the Southeastern United States (Alabama, Florida, Georgia, Mississippi, North Carolina, South Carolina, and Tennessee), delivers Xilinx public and private courses in your region. Visit www.hardent.com/training or contact Hardent's Training Coordinator for more information, to register for a class, or to schedule a private course.

Email: training@hardent.com
Telephone: 514-284-5252