After completing this comprehensive training, you will have the necessary skills to:

- Use the Xilinx Power Estimator spreadsheet to estimate your design’s power consumption after synthesis or implementation to build a better power estimate
- Use Power Report in the Vivado Design Suite to estimate your design’s power consumption after implementation to build the most accurate power estimate
- Use the power_opt implementation options to automatically reduce your design’s power consumption
- Use optimum HDL coding techniques and design practices to reduce your design’s power consumption
- Take advantage of the dedicated hardware features of your FPGA to reduce power consumption

Lab Descriptions

- **Lab 1:** Power Estimation with XPE – Estimate the resources required based on the high-level design description. Enter the amount of resources and default activity rates for the design and evaluate the estimated power calculated by XPE.
- **Lab 2:** Power Analysis Using the Vivado IDE – Estimate the design’s power consumption at synthesis and implementation with the Vivado power report. Generate a power report by using vectorless and vector-based mode and export the power report to the Power Estimator.
- **Lab 3:** Dynamic Power Estimation with the Vivado IDE – Run the post-synthesis functional simulation of the design to generate a switching activity interchange format (SAIF) file. Create a power report with vectorless and vector-based activity information to verify the design’s dynamic power consumption.

Course Outline

- Introduction
- FPGA Power Requirements
- Xilinx Power Estimator Spreadsheet (XPE)
- **Lab 1:** Power Estimation with XPE
- Vivado Power Analysis and Optimization
- **Lab 2:** Power Analysis Using the Vivado IDE
- **Lab 3:** Dynamic Power Estimation with the Vivado IDE
- Power Management Design Techniques
- Power Optimization of I/O Resources
- 7 Series Power Management Features
- UltraScale Architecture Power Management Features
- How to Solve a Power Problem
- Worse-Case Thermal Calculations (optional)
- Spartan-6 FPGA Power Management Features (optional)
- Virtex-6 FPGA Power Management Features (optional)
- Power and Temperature Measurement Features (optional)
- Introduction to Partial Reconfiguration (optional)

Prerequisites

- Essentials of FPGA Design course or equivalent knowledge of FPGA architecture features; the Xilinx implementation software flow and implementation options; reading timing reports; basic FPGA design techniques; global timing constraints and the Constraints Editor
- Intermediate HDL knowledge (VHDL or Verilog)
- Solid digital design background

Recommended

- Designing for Performance course
- Basic FPGA Architecture: Memory and Clocking Resources
- Vivado Design or System Edition 2014.3
- Architecture: 7 series and UltraScale FPGAs*
- Demo board: N/A

**This course focuses on the 7 series and UltraScale™ architectures. Check with Hardent for the specifics of any course customizations.

Register Today

Hardent, the Authorized Training Provider (ATP) for Canada (excluding British Columbia), New England (Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont) and the Southeastern United States (Alabama, Florida, Georgia, Mississippi, North Carolina, South Carolina and Tennessee) delivers Xilinx public and private courses in your region. Visit www.hardent.com/training or contact Hardent’s Training Coordinator for more information, to register for a class or to schedule a private course.

Email: training@hardent.com
Telephone: 514-284-5252