How to Design a High-Speed Memory Interface

CONN-MIF-ILT (v1.0H)

Course Description

This course teaches hardware designers who are new to high-speed memory I/O to design a memory interface in Xilinx FPGAs. It introduces designers to the basic concepts of high-speed memory I/O design, implementation, and debug using Xilinx 7 series FPGAs.

Additionally, students will learn about the tools available for high-speed memory interface design, debug, and implementation of high-speed memory interfaces.

The major memory types covered are DDR2 and DDR3. The following memory types are covered on demand: RLDRAMII, LPDDR2, and QDRII+. Labs are available for DDR3 on the Kintex®-7 FPGA KC705 board.

Level – Connectivity 3

Course Duration – 2 days

Price – $1600 or 16 Training Credits

Course Part Number – CONN-MIF-ILT

Who Should Attend? – FPGA designers and logic designers

Prerequisites

- VHDL or Verilog experience or Designing with VHDL or Designing with Verilog course
- Familiarity with logic design: state machines and synchronous design
- Very helpful to have:
 - Basic knowledge of FPGA architecture
 - Familiarity with Xilinx implementation tools
- Nice to have:
 - Familiarity with I/O basics
 - Familiarity with high-speed I/O standards

Software Tools

- Vivado® Design or System Edition 2015.1
- Mentor Graphics Questa Advanced Simulator 10.3d
- Mentor Graphics HyperLynx SI 9.x

Hardware

- Architecture: 7 series FPGAs*
- Demo board: Kintex®-7 FPGA KC705 board*

* This course focuses on the 7 series architecture. Check with Hardent for the specifics of the in-class lab board or other customizations.

After completing this comprehensive training, you will have the necessary skills to:

- Identify the FPGA resources required for memory interfaces
- Describe different types of memories
- Utilize Xilinx tools to generate memory interface designs
- Simulate memory interfaces with the Xilinx Vivado simulator
- Implement memory interfaces
- Identify the board design options for the realization of memory interfaces
- Test and debug your memory interface design
- Run basic memory interface signal integrity simulations

Course Outline

Day 1

- Course Introduction
- 7 Series FPGAs Overview
- Memory Devices Overview
- 7 Series Memory Interface Resources
- Memory Controller Details and Signals
- MIG Design Generation

Lab Descriptions

Day 1

- **Lab 1:** MIG Core Generation
- **Lab 2:** MIG Design Simulation
- **Lab 3:** MIG Design Implementation

Day 2

- **Lab 4:** MIG Design Debugging
- **Lab 5:** MIG in IP Integrator
- **Lab 6:** DDR3 Signal Integrity Simulation (optional)

Register Today

Hardent, the Authorized Training Provider (ATP) for Canada (excluding British Columbia), New England (Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont) and the Southeastern United States (Alabama, Florida, Georgia, Mississippi, North Carolina, South Carolina and Tennessee) delivers Xilinx public and private courses in your region. Visit www.hardent.com/training or contact Hardent's Training Coordinator for more information, to register for a class or to schedule a private course.

Email: training@hardent.com
Telephone: 514-284-5252

© 2015 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm. All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.